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Notation, basic notions

I Attributes X1, . . . ,Xn, index set N = {1, . . . , n}

I An alternative x ∈ X = X1 × · · · × Xn is denoted by
(x1, . . . , xn)

I Notation: for A ⊆ N, (xA, y−A) ∈ X is the compound
alternative taking value xi if i ∈ A and value yi otherwise.
Similarly, XA = ×i∈AXi

I <: preference relation (complete, transitive) on X

I U: (overall) utility function. U represents < if
x < y ⇔ U(x) ≥ U(y) (ordinal measurement)

I Example: the additive utility model

U(x) =
∑
i∈N

ui (xi )
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Preferential independence

I A ⊂ N is preferentially independent of its complement N \A if
for every x , y , z , z ′ ∈ X

(xA, z−A) < (yA, z−A)⇔ (xA, z
′
−A) < (yA, z

′
−A)

I The attributes X1, . . . ,Xn are (mutually) preferentially
independent if every A ⊂ N is preferentially independent of its
complement

I Does not always hold! Example: evaluation of students. The
following preference reversal is not unlikely:

Mathematics Physics Language skills
Student A 40 90 60
Student B 40 60 90
Student C 80 90 60
Student D 80 60 90

A � B and C ≺ D

I The additive utility model implies preferential independence
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Preferential independence

We may say that when the attributes are not mutually
preferentially independent, there is interaction among the
attributes, while there is no interaction if mutual preference
independence holds.

interaction ⇔ not(mutual preferential independence)

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Preferential independence

We may say that when the attributes are not mutually
preferentially independent, there is interaction among the
attributes, while there is no interaction if mutual preference
independence holds.

interaction ⇔ not(mutual preferential independence)

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Weak independence

I A weaker condition is weak (preferential) independence: for all
i ∈ N, {i} is preferentially independent of its complement
N \ {i}

(xi , z−i ) < (yi , z−i )⇔ (xi , z
′
−i ) < (yi , z

′
−i )

I Under weak independence, one can define on each attribute
Xi a preference relation <i :

xi <i yi iff (xi , z−i ) < (yi , z−i )

for some z−i
I Under weak independence and order density, < can be

represented by the decomposable model

U(x) = F (u1(x1), . . . , un(xn))

with F a strictly increasing function, and the ui ’s are utility
functions representing <i .
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Weak independence

Although standard in decision models, the condition does not
always hold: see the menu example.

(meat,red wine) � (meat, white wine)
(fish,red wine) ≺ (fish, white wine)
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Outline

I A commonly used example of decomposable model is when F
is the weighted arithmetic mean

F (a1, . . . , an) =
n∑

i=1

wiai

I This model amounts to the additive utility model, and
therefore it satisfies mutual preference independence, and
cannot represent interaction between criteria

I A generalization of the weighted arithmetic mean is given by
the Choquet integral model and the MLE model: they are
based on a generalized set of weights, called a capacity.
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Interacting criteria

Let a, b, c be three alternatives evaluated on 2 criteria as follows:

u1(a1) = 0.4, u1(b1) = 0, u1(c1) = 1
u2(a2) = 0.4, u2(b2) = 1, u2(c2) = 0,

where scores are given in [0, 1]. Suppose that the decision maker
(DM) says a � b ∼ c .

I Putting weights w1,w2 on criteria 1 and 2, no weighted
arithmetic mean can represent this preference!

I Solution: put a weight w12 on the group of criteria 1 and 2,
expressing the fact that it is important that both criteria are
satisfied, not only one.
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Capacities

I N = {1, . . . , n} (index set of attributes)

I A (normalized) capacity (Choquet 1953) or fuzzy measure
(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying

I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities

I N = {1, . . . , n} (index set of attributes)
I A (normalized) capacity (Choquet 1953) or fuzzy measure

(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying
I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities

I N = {1, . . . , n} (index set of attributes)
I A (normalized) capacity (Choquet 1953) or fuzzy measure

(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying
I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities

I N = {1, . . . , n} (index set of attributes)
I A (normalized) capacity (Choquet 1953) or fuzzy measure

(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying
I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities

I N = {1, . . . , n} (index set of attributes)
I A (normalized) capacity (Choquet 1953) or fuzzy measure

(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying
I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities

I N = {1, . . . , n} (index set of attributes)
I A (normalized) capacity (Choquet 1953) or fuzzy measure

(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying
I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities

I N = {1, . . . , n} (index set of attributes)
I A (normalized) capacity (Choquet 1953) or fuzzy measure

(Sugeno 1974) on N is a function v : 2N → [0, 1] satisfying
I v(∅) = 0, v(N) = 1
I S ⊆ T implies v(S) ≤ v(T ) (monotonicity)

I A capacity is additive if v(A ∪ B) = v(A) + v(B) for disjoint
A,B

I Roughly speaking, v(A) is the weight of importance of the
group of criteria A ⊆ N

I If v is additive, v(A) is just the sum of individual weights
v({i}), i ∈ A

I More precisely, letting 1i , 0i be particular elements of Xi (e.g.,
satisfactory, unsatisfactory), and fixing ui (1i ) = 1, ui (0i ) = 0,

v(A) = U(1A, 0−A) = F (1A, 0−A)

I It follows that F can be seen as an extension of v on [0, 1]n

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Capacities, pseudo-Boolean functions and their extensions

I Through the identification S ↔ 1S (S ⊆ N), capacities/set
functions v : 2N → R can be identified with pseudo-Boolean
functions f : {0, 1}N → R

I An immediate polynomial expression of a pBf f is

f (x) =
∑
A⊆N

f (1A)
∏
i∈A

xi
∏

i∈N\A

(1− xi ) (x ∈ {0, 1}n)

I Rearranging terms, we get the multilinear form:

f (x) =
∑
A⊆N

mA

∏
i∈A

xi (x ∈ {0, 1}n)

I and mA is the Möbius transform of the set function v
corresponding to f , given by

mA = mv (A) =
∑
B⊆A

(−1)|A\B|v(B)
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Capacities, pseudo-Boolean functions and their extensions

I Allowing x to vary in [0, 1]n we get the multilinear extension
(MLE) or Owen extension:

f Ow(x) =
∑
A⊆N

mA

∏
i∈A

xi (x ∈ [0, 1]n)

I The multilinear form can be equivalently written as

f (x) =
∑
A⊆N

mA

∧
i∈A

xi (x ∈ {0, 1}n)

I Allowing x to vary in [0, 1]n in the above expression, we get
the Choquet integral (CI) or Lovász extension:

f Lo(x) =
∑
A⊆N

mA

∧
i∈A

xi (x ∈ [0, 1]n)

I In terms of interpolation, the multilinear extension is the
classical multilinear interpolation method, while the Lovász
extension is the parsimonious (piecewise) linear interpolation
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MLE vs. CI in MAUT

What is the difference between MLE and CI in terms of
preference representation?

The answer lies in difference measurement.

I A quaternary relation <∗ on X is a subset of X 2 × X 2.
xy <∗ st means that the difference of intensity of preference
of x over y is greater or equal to the difference of intensity of
preference of s over t.

I Difference measurement consists in finding a mapping
U : X → R such that

xy <∗ st ⇔ U(x)− U(y) ≥ U(s)− U(t)

I (compare with ordinal measurement: x < y iff U(x) ≥ U(y))

I Sufficient conditions for the existence of difference
measurement are known (Krantz et al. 1971)
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MLE vs. CI in MAUT

I <∗ satisfies weak difference independence if for every i ∈ N
and every x , y , z ,w , t, t ′ ∈ X we have

(xi , t−i )(yi , t−i ) <
∗ (zi , t−i )(wi , t−i )⇔

(xi , t
′
−i )(yi , t

′
−i ) <

∗ (zi , t
′
−i )(wi , t

′
−i )

I (recall weak preferential independence: (xi , t−i ) < (yi , t−i ) ⇔
(xi , t

′
−i ) < (yi , t

′
−i ))

Theorem
(Dyer and Sarin 1979 + Keeney and Raiffa 1976) Suppose that the
conditions for difference measurement are fulfilled and that the set
of attributes is bounded. Then <∗ satisfies weak difference
independence iff ∃ a unique capacity µ on N and utility functions
u1, . . . , un s.t. F is the Owen extension (MLE) of µ.
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The Choquet integral and mutual preferential independence

P ⊆ N is positive w.r.t. µ if for every A ⊆ N, A ∩ P = ∅ implies
µ(A) < µ(A ∪ P).

Theorem
(Murofushi and Sugeno 1992, 2000) Suppose F = CI and⋂

i∈N ui (Xi ) contains a nontrivial real interval.

1. Suppose there are exactly two essential attributes i , j . T.f.a.e.:

I Attributes i and j are preferentially independent
I {i}, {j} are both positive
I µ({i , j}) > max{µ({i}), µ({j})}

2. Suppose that there at least 3 essential attributes. T.f.a.e.:
I The attributes are mutually preferentially independent
I µ is additive
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Outline
1. Multiattribute utility theory (MAUT)

2. The Choquet integral and MLE models

3. GAI models

4. Interaction between criteria
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The GAI model

I The GAI (Generalized Additive Independence) model
(Fishburn 1967) has the following form:

U(x) =
∑
S∈S

uS(xs)

where S ⊆ 2N is a collection of nonempty subsets of N, and
uS is a utility function defined on XS .

I The GAI model generalizes the additive utility model (S is the
set of singletons).

I The GAI model need not satisfy weak independence
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The GAI model: decomposition, p-additivity

I Given a GAI model U, there is no unique way to write its
expression (called decomposition). Ex:

U(x) = 2x1 + x2 −min(x1, x2) = x1 + max(x1, x2)

I A GAI model U is said to be p-additive if there exists a
decomposition

U(x) =
∑
S∈S

uS(xS)

such that |S | ≤ p for every S ∈ S, with equality for some S ,
and no decomposition exists with all terms involving less than
p variables.
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Discrete GAI models and multichoice games

I We suppose that attributes take a finite number of values:
Xi = {a0i , . . . , a

mi
i }, i ∈ N

I Build the function v on {0, . . . ,m1} × · · · × {0, . . . ,mn} as
follows:

v(j1, . . . , jn) = U(aj11 , . . . , a
jn
n )− U(a01, . . . , a

0
n)

I Then v is a multichoice game on N (Hsiao and Raghavan
1990). If v is monotone increasing and m1 = · · · = mn = k ,
then v is a k-ary capacity (G. and Labreuche 2003).

I It can be shown that p-additive GAI discrete models are
exactly p-additive multichoice games (in the sense of their
Möbius transform)(G. and Labreuche 2016).
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Interaction modelled by a capacity

Take two criteria i , j ∈ N.

I positive interaction or synergy between i and j : the
satisfaction of both criteria is much more valuable than the
satisfaction of them separately (complementary criteria):

v(S ∪ {i , j})− v(S) ≥ (v(S ∪ i)− v(S)) + (v(S ∪ j)− v(S)),

which can be rewritten as

v(S ∪ {i , j})− v(S ∪ i)− v(S ∪ j) + v(S) ≥ 0

I negative interaction or synergy between i and j : the
satisfaction of both is not that better than the
satisfaction of one of them (redundant or substitutable criteria)

v(S ∪ {i , j})− v(S ∪ i)− v(S ∪ j) + v(S) ≤ 0
I Case of equality: the added value by both criteria is exactly

the sum of the individual added values (independence between
criteria)
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Interaction

I (Murofushi and Soneda 1993; Owen 1972) The interaction
index Iij(v) is defined as

Iij(v) =
∑

S⊆N\{i,j}

|S |!(n − |S | − 2)!

(n − 1)!
(v(S∪{i , j})−v(S∪i)−v(S∪j)+v(S))

I The interaction index can be generalized to any set of criteria
(G., 1997):

IT (v) =
∑

S⊆N\T

( |S |!(n − |S | − |T |)!

(n − |T |+ 1)!

∑
K⊆T

(−1)|T\K |v(S∪K )
)
.

I {IT (v)}T⊆N is equivalent to {v(S)}S⊆N .
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Solution of the student example

Mathematics Physics Language skills
Student A 40 90 60
Student B 40 60 90
Student C 80 90 60
Student D 80 60 90

Preference is A � B and D � C

Modeling: mathematics and physics have a negative interaction,
physics and language have a positive interaction (and similarly for
maths and language)

A M P L M,P M,L P,L M,P,L
v(A) 0.3 0.3 0.2 0.4 0.7 0.7 1

This yields

U(A) = 63, U(B) = 60, U(C ) = 71, U(D) = 76
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Modeling: mathematics and physics have a negative interaction,
physics and language have a positive interaction (and similarly for
maths and language)

A M P L M,P M,L P,L M,P,L
v(A) 0.3 0.3 0.2 0.4 0.7 0.7 1

This yields

U(A) = 63, U(B) = 60, U(C ) = 71, U(D) = 76
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Transforms of set functions

I We consider set functions in their full generality (i.e.,
v(∅) = 0 is not assumed)

I A transform is a linear one-to-one mapping Ψ : R2N → R2N ;
v 7→ Ψv .

I Example: the Möbius transform:

mv (S) =
∑
T⊆S

(−1)|S\T |v(T ); v(S) =
∑
T⊆S

mv (T )

I The interaction index defines a transform too:

I v (S) =
∑

T⊆N\S

( t!(n − s − t)!

(n − t + 1)!

∑
K⊆S

(−1)|S\K |v(T ∪ K )
)
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I Example: the Möbius transform:

mv (S) =
∑
T⊆S

(−1)|S\T |v(T ); v(S) =
∑
T⊆S

mv (T )

I The interaction index defines a transform too:

I v (S) =
∑

T⊆N\S

( t!(n − s − t)!

(n − t + 1)!

∑
K⊆S

(−1)|S\K |v(T ∪ K )
)

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Transforms of set functions

I We consider set functions in their full generality (i.e.,
v(∅) = 0 is not assumed)

I A transform is a linear one-to-one mapping Ψ : R2N → R2N ;
v 7→ Ψv .

I Example: the Möbius transform:
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I Example: the Möbius transform:

mv (S) =
∑
T⊆S

(−1)|S\T |v(T ); v(S) =
∑
T⊆S

mv (T )

I The interaction index defines a transform too:

I v (S) =
∑

T⊆N\S

( t!(n − s − t)!

(n − t + 1)!

∑
K⊆S

(−1)|S\K |v(T ∪ K )
)

M. Grabisch c©2017 Multicriteria decision making with interacting criteria



Transforms of set functions

Its inverse is given by

v(S) =
∑
T⊆N

βt|S∩T |I
v (T )

with βlk =
∑k

j=0

(k
j

)
Bl−j (k ≤ l), and B0,B1, . . . are the Bernoulli

numbers.

k \ l 0 1 2 3 4

0 1 −1
2

1
6 0 − 1

30
1 1

2 −1
3

1
6 − 1

30
2 1

6 −1
6

2
15

3 0 − 1
30

4 − 1
30
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Transforms of set functions

Two other important tranforms:
I The Banzhaf interaction transform:

I vB(S) =
(1

2

)n−s ∑
T⊆N

(−1)|S\T |v(T )

and its inverse:

v(S) =
∑
T⊆N

(−1)|T\S|

2t
I vB(T )

I The Fourier transform:

v̂(S) =
1

2n

∑
T⊆N

(−1)|S∩T |v(T )

and its inverse
v(S) =

∑
T⊆N

(−1)|S∩T |v̂(T )

I Relation between the Banzhaf interaction and Fourier
transforms:

v̂(S) =
(
− 1

2

)s
I vB(S)
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Interaction and Mutual Preferential Independence

I Fact:

v additive ⇔ mv (S) = I v (S) = I vB(S) = 0, ∀S , |S | > 1

I From (Murofushi, Sugeno 1992), supposing there are at least
3 essential attributes, for the Choquet integral model we
deduce:

The attributes are mutually preferentially
independent iff all interaction indices are null.
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Interaction indices for aggregation functions

I Let F : [a, b]n → [a, b] be an aggregation function.

I The total variation of F w.r.t. coordinate i is the function

∆iF (x) = F (bix−i )− F (aix−i ) (x ∈ [a, b]n)

I The second-order total variation of F w.r.t coordinates i , j is
the function

∆ijF (x) = ∆i (∆jF (x)) = ∆j(∆i (x))

F (bibjx−ij)− F (biajx−ij)− F (bjaix−ij) + F (aiajx−ij)

I Examples (with [a, b] = [0, 1]):

∆ij min(x) =
∧
k 6=i ,j

xk ≥ 0

∆ij max(x) = −1 +
∨
k 6=i ,j

xk ≤ 0

∆ij

(1

n

∑
i

xi

)
= 0.
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Interaction indices for aggregation functions

I Generalization: the total variation of F w.r.t. K ⊆ N is the
function

∆KF (x) =
∑
L⊆K

(−1)|L|F (aLbK\Lx−K )

I The interaction index of K ⊆ N on F is defined as the
average corresponding total variation:

IK (F ) =
1

(b − a)n

∫
[a,b]n

∆KF (x)

b − a
dx
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Interaction indices for aggregation functions

Theorem
(G., Marichal and Roubens 2000) Consider [a, b]n = [0, 1]n and v a
normalized capacity. The following holds.

1. The interaction index of K ⊆ N for the Choquet integral
(Lovász extension) is the interaction transform at K :

IK (

∫
·dv) = I v (K )

2. The interaction index of K ⊆ N for the Owen
multilinear extension is the Banzhaf interaction transform at K :

IK (f Ow) = I fB(K )

Note that

∆K f Ow(x) =
∂k f Ow

∂x|K
(x).
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The statistical approach: the Sobol indices

I The Sobol indices come from the decomposition of the
variance of a multivariate function with uniform i.i.d. random
variables.

I Let Y = f (Z ) with Z = (Z1, . . . ,Zn) be such a multivariate
function. It can be decomposed in the following way:

f (Z ) = f0 +
n∑

i=1

fi (Zi ) +
∑
i<j

fij(Zi ,Zj) + · · ·+ fN(Z )

with

f0 = E (Y )

fi (Zi ) = E (Y | Zi )− f0

fij(Zi ,Zj) = E (Y | Zi ,Zj)− E (Y | Zi )− E (Y | Zj) + f0

etc .

I Property: all terms in the decomposition except f0 have zero
mean
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The statistical approach: the Sobol indices

It follows that the variance of Y can be decomposed as

σ2Y =
n∑

i=1

σ2fi +
∑
i<j

σ2fij + · · ·+ σ2fN

with σ2fi = E ((fi (Zi ))2), etc.

It can be shown (G. and Labreuche 2016) that if f is the Owen
extension f Ow, then

σ2
f Ow
S

=
1

3s
(µ̂(S))2

where µ̂ is the Fourier transform of the capacity µ underlying f Ow
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Interaction in the GAI model

Question: Considering a GAI model U with
decomposition U(x) =

∑
S∈S uS(xS), can we conclude

that, due to the presence of the term uS , the variables xS
are interacting?

We limit our discussion to the case of 2-additive GAI models.
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Interaction in the GAI model

I Attributes i and j are 2-independent if for every
xi , yi ∈ Xi , xj , yj ∈ Xj , z−ij ∈ X−ij ,

((xi , xj , z−ij), (yi , xj , z−ij)) ∼∗ ((xi , yj , z−ij), (yi , yj , z−ij)), (1)

where ∼∗ is the symmetric part of a quartenary relation <∗.

I Assuming that the usual conditions of difference measurement
are satisfied and that U represents <∗, (1) translates into

U(xi , xj , z−ij) + U(yi , yj , z−ij) = U(xi , yj , z−ij) + U(yi , xj , z−ij).

I The term uij is trivial if it can be put under the form
uij(xi , xj) = vi (xi ) + vj(xj) + c

I A decomposition is parsimonious if it has no trivial term.
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Interaction in the GAI model

Theorem
Let U be a 2-additive GAI model and i , j be distinct attributes.
Assume that the usual conditions of difference measurement are
satisfied. T.f.a.e.:

1. i , j are 2-independent for U;

2. There exists a parsimonious decomposition of U without a
term uij ;

3. No parsimonious decomposition of U contains a term uij .
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Interaction in discrete GAI models

As shown above, discrete GAI models are equivalent to multichoice
games. Interactions indices have been defined for multichoice
games, as well as for more general games (games on lattices):

1. M. Grabisch and Ch. Labreuche, Derivative of functions over
lattices as a basis for the notion of interaction between
attributes. Annals of Mathematics and Artificial Intelligence,
Vol. 49, 2007, 151-170.

2. M. Grabisch and F. Lange, Games on lattices, multichoice
games and the Shapley value: a new approach. Mathematical
Methods of Operations Research, Vol. 65, 2007, 153-167.

3. F. Lange and M. Grabisch, The interaction transform for
functions on lattices. Discrete Mathematics, Vol 309 (2009),
4037-4048.
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Summary

In any of the approaches, the interaction for 2 criteria i , j
is always of the form:

average
(
f (. . . ,∆x ,∆y , . . .)−f (. . . , 0,∆y , . . .)−f (. . . ,∆x , 0, . . .)

+ f (. . . , 0, 0, . . .)
)
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